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Abstract 

Control charts are widely used for process monitoring. 

Software reliability process can be monitored efficiently 

by using Statistical Process Control (SPC). It assists the 

software development team to identify failures and actions 

to be taken during software failure process and hence, 

assures better software reliability. In this paper we 

proposed a control mechanism based on order statistics of 

the cumulative quantity between observations of time 

domain failure data using mean value function of Weibull 

distribution, which is based on Non Homogenous Poisson 

Process (NHPP). The Maximum Likelihood Estimation 

(MLE) method is used to derive the point estimators of a 

two-parameter Weibull distribution. 
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I. INTRODUCTION 

Software Reliability is the application of statistical techniques 

to data collected during system development and operation to 

specify, predict, estimate, and assess the reliability of 

software-based systems. To identify and eliminate errors in 

software development process and also to improve software 

reliability, the Statistical Process Control concepts and 

methods are the best choice. SPC concepts and methods are 

used to monitor the performance of a software process over 

time in order to verify that the process remains in the state of 

statistical control. It helps in finding assignable causes, long 

term improvements in the software process. Software quality 

and reliability can be achieved by eliminating the causes or 

improving the software process or its operating procedures [2]. 

The most popular technique for maintaining process control is 

control charting. Software process control is used to secure the 

quality of the final product which will conform to predefined 

standards. In any process, regardless of how carefully it is 

maintained, a certain amount of natural variability will always 

exist. A process is said to be statistically “in-control” when it 

operates with chance causes of variation. On the other hand, 

when assignable causes are present, the process is statistically 

“out-of-control”. The control charts can be classified into 

several categories, as per several distinct criteria. Control 

charts should be capable to create an alarm when a shift in the 

level of one or more parameters of the underlying distribution 

or a non-random behavior occurs. Normally, such a situation 

will be reflected in the control chart by points plotted outside 

the control limits or by the presence of specific patterns. The 

most common non-random patterns are cycles, trends, 

mixtures and stratification [3]. For a process to be in control 

the control chart should not have any trend or nonrandom 

pattern. 

Statistical Process Control (SPC) is about using control charts 

to manage software development efforts, in order to effect 

software process improvement. The practitioner of SPC tracks 

the variability of the process to be controlled. The early 

detection of software failures will improve the software 

reliability. The selection of proper SPC charts is essential to 

effective statistical process control implementation and use. 

The SPC chart selection is based on data, situation and need 

[4]. Many factors influence the process, resulting in 

variability. The causes of process variability can be broadly 

classified into two categories, viz., assignable causes and 

chance causes. 

The control limits can then be utilized to monitor the failure 

times of components. After each failure, the time can be 

plotted on the chart. If the plotted point falls between the 

calculated control limits, it indicates that the process is in the 

state of statistical control and no action is warranted. If the 

point falls above the UCL, it indicates that the process 

average, or the failure occurrence rate, may have decreased 

which results in an increase in the item between failures. This 

is an important indication of possible process improvement. If 
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this happens, the management should look for possible causes 

for this improvement and if the causes are discovered then 

action should be taken to maintain them. If the plotted point 

falls below the LCL, It indicates that the process average, or 

the failure occurrence rate, may have increased which results 

in a decrease in the failure time. This means that process may 

have deteriorated and thus actions should be taken to identify 

and causes may be removed. It can be noted here that the 

whole process involves the mathematical model of the mean 

value function and knowledge about its parameters. If the 

parameters are known they can be taken as they are for the 

further analysis is. If the parameters are not known, they have 

to be estimated using a simple data by any admissible, 

efficient method of distribution. This is essential because the 

control limits depend on mean value function which intern 

depend on the parameters. 

The control limits for the chart are defined in such a manner 

that the process is considered to be out of control when the 

time to observe exactly one failure is less than LCL or greater 

than UCL. Our aim is to monitor the failure process and detect 

any change of the intensity parameter. When the process is in 

control, there is a chance for this to happen and it is commonly 

known as false alarm. The traditional false alarm probability is 

to set to be 0.27% although any other false alarm probability 

can be used. The actual acceptable false alarm probability 

should in fact depend on the actual product or process [10].  

II. BACK GROUND 

This section presents the theory that underlies Weibull 

distribution and maximum likelihood estimation for complete 

data. If „t‟ is a continuous random variable with 

pdf: 1 2( ; , , , )kf t    . Where 1 2, , , k   are k unknown 

constant parameters which need to be estimated, and cdf: 

 F t
. Where, the mathematical relationship between the pdf 

and cdf is given by:
  

( )
d F t

f t
dt

 . Let „a‟ denote the 

expected number of faults that would be detected given 

infinite testing time in case of finite failure NHPP models. 

Then, the mean value function of the finite failure NHPP 

models can be written as: ( ) ( )m t aF t . where, F(t) is a 

cumulative distribution function. The failure intensity function 

( )t  in case of the finite failure NHPP models is given by: 

( ) '( )t aF t   [9].  

2.1 NHPP model 

The Non-Homogenous Poisson Process (NHPP) based 

software reliability growth models (SRGMs) are proved to be 

quite successful in practical software reliability engineering 

[5]. The main issue in the NHPP model is to determine an 

appropriate mean value function to denote the expected 

number of failures experienced up to a certain time point. 

Model parameters can be estimated by using Maximum 

Likelihood Estimate (MLE). Various NHPP SRGMs have 

been built upon various assumptions. Many of the SRGMs 

assume that each time a failure occurs, the fault that caused it 

can be immediately removed and no new faults are introduced. 

Which is usually called perfect debugging. Imperfect 

debugging models have proposed a relaxation of the above 

assumption [6,7]. 

Let   , 0N t t   be the cumulative number of software 

failures by time „t‟. m(t) is the mean value function, 

representing the expected number of software failures by time 

„t‟.  t  is the failure intensity function, which is 

proportional to the residual fault content. Thus 

  (1 )btm t a e   and  
( )

( ( ))
dm t

t b a m t
dt

    . where „a‟ 

denotes the initial number of faults contained in a program and 

„b‟ represents the fault detection rate. In software reliability, 

the initial number of faults and the fault detection rate are 

always unknown. The maximum likelihood technique can be 

used to evaluate the unknown parameters. In general NHPP 

SRGM  t can be expressed as 

       
( )dm t

t b t a t m t
dt

      . where  a t  is the time-

dependent fault content function which includes the initial and 

introduced faults in the program and  b t  is the time-

dependent fault detection rate. A constant  a t  implies the 

perfect debugging assumption, i.e. no new faults are 

introduced during the debugging process. A constant  b t  

implies the imperfect debugging assumption, i.e. when the 

faults are removed, then there is a possibility to introduce new 

faults.  
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2.2 Order Statistics 

Order statistics deals with properties and applications of 

ordered random variables and of functions of these variables. 

The use of order statistics is significant when failures are 

frequent or inter failure time is less. Let X denote a continuous 

random variable with probability density function (pdf) f(x) 

and cumulative distribution function (cdf) F(x), and let (X1 , 

X2 , …, Xn) denote a random sample of size n drawn on X. 

The original sample observations may be unordered with 

respect to magnitude. A transformation is required to produce 

a corresponding ordered sample. Let (X(1) , X(2) , …, X(n)) 

denote the ordered random sample such that X(1) < X(2) < … 

< X(n); then (X(1), X(2), …, X(n)) are collectively known as 

the order statistics derived from the parent X. The various 

distributional characteristics can be known from Balakrishnan 

and Cohen [1]. 

2.3 Weibull distribution 

The probability density function of a two-parameter Weibull 

distribution has the form:    1
( )

bt
f t b bt e




 
 . where b > 0 

is a scale parameter and 0   is a shape parameter. The 

corresponding cumulative distribution function is: 

  ( )1 btF t e
  . Mean Value Function of the Weibull 

distribution when 2   i.e. Rayleigh 

distribution.  
2

( ) 1
bt

m t a e
  

  
. For rth order statistics, the 

mean value function is expressed as
  

2

( ) 1
r

btrm t a e
  

  
. 

The failure intensity function is given as: 

    
2 21

2( ) 2. . . . 1 .
r

bt btr rt a b r t e e


 
  .  

2.4  MLE (Maximum Likelihood) Parameter Estimation 

The idea behind maximum likelihood parameter estimation is 

to determine the parameters that maximize the probability 

(likelihood) of the sample data. The method of maximum 

likelihood is considered to be more robust (with some 

exceptions) and yields estimators with good statistical 

properties. In other words, MLE methods are versatile and 

apply to many models and to different types of data. Although 

the methodology for maximum likelihood estimation is 

simple, the implementation is mathematically intense. Using 

today's computer power, however, mathematical complexity is 

not a big obstacle. If we conduct an experiment and obtain N 

independent observations, 1 2, , , Nt t t
. Then the likelihood 

function [8] may be given by the following product: 

 1 2 1 2 1 2

1

, , , | , , , ( ; , , , )
N

N k i k

i

L t t t L f t     


 
     

Likelihood function by using λ(t) is: 
1

( )
n

i

i

L t


  

The logarithmic likelihood function is given by: 

1 2

1

ln ln ( ; , , , )
N

i k

i

L f t   


  
 

Log Likelihood function is: (
1

( )
n

i

i

LogL Log t


 
  

 
 ) 

             =  
1

log ( ) ( )
n

i n

i

t m t


  

The maximum likelihood estimators (MLE) of 1 2, , , k   are 

obtained by maximizing L or  , where is ln L . By 

maximizing , which is much easier to work with than L, the 

maximum likelihood estimators (MLE) of 1 2, , , k   are the 

simultaneous solutions of k equations such as: 

 
 

0
j

 



,  j=1,2,…,k 

The parameters „a‟ and „b‟ are estimated using iterative 

Newton Raphson Method, which is given as

 
1

( )

'( )

n

n n

n

g x
x x

g x
  

 

III. ILLUSTRATING THE MLE METHOD 

3.1 parameter estimation 

To estimate „a‟ and „b‟ , for a sample of n units, first obtain 

the likelihood function: assuming 2  .   

The Likelihood function  
1

n
r

i

i

L t


  



G.Krishna Mohan, Dr. Satya Prasad Ravi and Prof. R.R.L Kantam/ International Journal of Engineering 

Research and Applications (IJERA)                 ISSN: 2248-9622                           www.ijera.com
 

Vol. 1, Issue 4, pp. 1486-1493 

1489 | P a g e  

 

Take the natural logarithm on both sides, The Log Likelihood 

function is given as: 
1

log[ ( )]
n

i

i

LogL t


     

    
2 21

2

1

log log 2. . . . 1 .
n r

bt btr

i

L a b r t e e


 



 
  

 


 

       
22 21

2

1

log log 2. . . . 1 . 1 n

rn r
btbt btr

i

L a b r t e e a e


 



           


 

Partially differentiating w.r.t „a‟ and equating to 0.(i.e. 

log
0

L

a





). 

  
2

1

r

r
bt

N
a

e



 
  

 

Partially differentiating w.r.t „b‟ and equating to 0.(i.e. 

log
0

L

b





). 

   
   

  

2

2

2

2

1 1

2
2 2 1 0

1

i

i

btn n
i

i
bt

i i

t ben
g b b t r N

b e




 

     


  . 

Again Partially differentiating w.r.t „b‟ and equating to 0.(i.e. 
2

2

log
0

L

b





). 

 

 
        

  

2 2 2

2

2

2
1

2 2 2

2
1

2
' 2

1 2

2 1 0

1

i i i

i

n

i

i

bt bt bt

n i i

bti

n
g b t

b

t e e b t e

r

e



  



   

  
  

 







 

The parameter „b‟ is estimated by iterative Newton Raphson 

Method using 1

( )

'( )

n

n n

n

g b
b b

g b
   , which is substituted in 

finding „a‟. 

3.2 Distribution of Time between failures 

We compute the software failures process through Mean 

Value Control chart based on the inter failure data given in 

Table 1,. We used cumulative time between failures data 

which is ordered through a transformation for software 

reliability monitoring using Weibull distribution. The 

transformation being applied is, the failure data is made into 

groups of 4, 5 and then cumulated. The inter failure time data 

represent the time laps between every two consecutive 

failures. On the other hand if a reasonable waiting time for 

failures is not a serious problem. We can group the inter 

failure time data into non overlapping successive subgroups of 

size 4 or 5 and add the failures times with needs of groups. For 

instance if a data of 100 inter failure times are available, we 

can group them into 20 disjoint subgroups of size 5. The sum 

totals in each subgroup would represent the time laps between 

every 5th failure. In the theory of statistics such a subtotal is 

defined as the 5th order statistics in a sample of size 5. 

In general for inter failure data of size „n‟ if „r‟ is any natural 

number less than n and preferably a factor of  „n‟ we can 

conveniently divide the data into „k‟ disjoint subgroups(k=n/r) 

and the cumulative total meets subgroup indicate the time 

between every rth failure. The probability distribution of such 

a time laps would be better in the rth order statistic in a 

subgroup of size „r‟. This would be equal to the rth power of 

the distribution function of the original variable. 

The parameters of the mean value function with the revised 

distribution function would determine the control limits of a 

new control chart involving order statistics. Hence they need a 

separate study. In the present paper we have taken r = 4, 5 and 

the basic distribution as weibull. Choice of r beyond 5 may 

create an unduly long waiting time for the occurrence of every 

rth failure. „ a


‟ and „ b


‟ are Maximum Likely hood Estimates 

(MLEs) of parameters and the values can be computed using 

iterative method for the given cumulative time between 

failures data [9] shown in table 1. The data is documented in 

Lyu(1996). There are in total 136 faults reported and the time 

between failures in seconds. Using „a‟ and „b‟ values we can 

compute ( )m t . 

Table:1 Time between failures of a software 

F.No TBF(h) F.No TBF(h) F.No TBF(h) 

1 3 47 6 93 2930 

2 30 48 79 94 1461 

3 113 49 816 95 843 

4 81 50 1351 96 12 

5 115 51 148 97 261 

6 9 52 21 98 1800 
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7 2 53 233 99 865 

8 91 54 134 100 1435 

9 112 55 357 101 30 

10 15 56 193 102 143 

11 138 57 236 103 108 

12 50 58 31 104 0 

13 77 59 369 105 3110 

14 24 60 748 106 1247 

15 108 61 0 107 943 

16 88 62 232 108 700 

17 670 63 330 109 875 

18 120 64 365 110 245 

19 26 65 1222 111 729 

20 114 66 543 112 1897 

21 325 67 10 113 447 

22 55 68 16 114 386 

23 242 69 529 115 446 

24 68 70 379 116 122 

25 422 71 44 117 990 

26 180 72 129 118 948 

27 10 73 810 119 1082 

28 1146 74 290 120 22 

29 600 75 300 121 75 

30 15 76 529 122 482 

31 36 77 281 123 5509 

32 4 78 160 124 100 

33 0 79 828 125 10 

34 8 80 1011 126 1071 

35 227 81 445 127 371 

36 65 82 296 128 790 

37 176 83 1755 129 6150 

38 58 84 1064 130 3321 

39 457 85 1783 131 1045 

40 300 86 860 132 648 

41 97 87 983 133 5485 

42 263 88 707 134 1160 

43 452 89 33 135 1864 

44 255 90 868 136 4116 

45 197 91 724   

46 193 92 2323   

Assuming an acceptable probability of false alarm of 0.27%, 

the control limits can be obtained as [10]: 

 
 

1 0.99865
bt

UT e



  

 

 
 

1 0.5
bt

CT e



  

 

 
 

1 0.00135
bt

LT e



  

   

These limits are converted to ( )Um t , ( )Cm t and ( )Lm t  form 

respectively. They are used to find whether the software 

process is in control or not by placing the points in Mean 

value chart shown in figure 1 & 2. A point below the control 

limit ( )Lm t  indicates an alarming signal. A point above the 

control limit ( )Um t indicates better quality. If the points are 

falling within the control limits, it indicates the software 

process is in stable condition. The estimated values of „a‟ and 

„b‟ and their control limits for both 4th-order and 5th-order 

statistics are as follows.  

Table: 4  Parameter estimates and their control limits of 4 and 

5 order 

Order a b )( Utm
 

)( Ctm
 

)( Ltm
 

4 2.414736 0.000049 2.411476 1.207368 0.003260 

5 1.933182 0.000058 1.930572 0.966591 0.002610 

 

Table: 2 Successive differences of 4 order mean values 

F. 

No 

4-order 

Cumulat

ives 

m(t) SD 

1 227 0.000299 0.000844 

2 444 0.001143 0.002195 

3 759 0.003338 0.003119 

4 1056 0.006457 0.016303 

5 1986 0.022760 0.018403 

6 2676 0.041163 0.070175 

7 4434 0.111338 0.034240 

8 5089 0.145578 0.017062 

9 5389 0.162639 0.062191 

10 6380 0.224830 0.076215 

11 7447 0.301045 0.036726 

12 7922 0.337771 0.201342 

13 10258 0.539113 0.086454 

14 11175 0.625566 0.135687 

15 12559 0.761253 0.093126 

16 13486 0.854379 0.181537 

17 15277 1.035915 0.108689 

18 16358 1.144605 0.188294 

19 18287 1.332898 0.207280 

20 20567 1.540178 0.277691 

21 24127 1.817869 0.251501 

22 28460 2.069370 0.151410 

23 32408 2.220781 0.113705 

24 37654 2.334486 0.045404 
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25 42015 2.379889 0.001927 

26 42296 2.381816 0.023993 

27 48296 2.405810 0.005306 

28 52042 2.411116 0.001081 

29 53443 2.412197 0.001401 

30 56485 2.413599 0.000943 

31 62651 2.414541 0.000097 

32 64893 2.414638 0.000096 

33 76057 2.414734 0.000002 

34 88682 2.414736  

 

Table:3 Successive differences of 5 order mean values 

F.N

o 

5-order 

Cumulat

ives 

m(t) SD 

1 342 0.000760 0.0013587 

2 571 0.002119 0.0039649 

3 968 0.006084 0.0193965 

4 1986 0.025481 0.0359380 

5 3098 0.061419 0.0974547 

6 5049 0.158873 0.0169449 

7 5324 0.175818 0.0715680 

8 6380 0.247386 0.0975878 

9 7644 0.344974 0.2155448 

10 10089 0.560519 0.0841946 

11 10982 0.644713 0.1512690 

12 12559 0.795982 0.2034536 

13 14708 0.999436 0.1328680 

14 16185 1.132304 0.1316687 

15 17758 1.263973 0.2033211 

16 20567 1.467294 0.2638261 

17 25910 1.731120 0.0956919 

18 29361 1.826812 0.0899189 

19 37642 1.916731 0.0113546 

20 42015 1.928085 0.0032165 

21 45406 1.931302 0.0013569 

22 49416 1.932659 0.0003875 

23 53321 1.933046 0.0000935 

24 56485 1.933140 0.0000386 

25 62661 1.933178 0.0000035 

26 74364 1.933182 0.0000000 

27 84566 1.933182  

 

By placing the time between failures of cumulative data 

shown in tables 2 and 3 on y axis and failure number on x axis 

and the values of control limits are placed on Mean Value 

chart, figure 1 and 2 is obtained respectively. The Mean Value 

charts shows that the 1st,2nd,3rd,25th and 28th to 33rd failure 

data of 4th-order and  1st and 21st to 26th of 5th -order has 

fallen below ( )Lm t which indicates the failure process is 

identified. It is significantly early detection of failures using 

Mean Value Chart. The software quality is determined by 

detecting failures at an early stage. The Remaining differences 

of successive failure data shown in figures 1 and 2 are in 

stable. No failure data fall outside the ( )Um t . It does not 

indicate any alarming signal. 
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Figure: 1 Mean Value Chart 
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Figure: 2 Mean Value Chart 

Conclusion 

 The 34 of 4th-order, 27 of 5th-order samples 

successive differences were plotted through the estimated 

mean value function against the failure number. The parameter 

estimation is carried out by Newton Raphson Iterative method. 

The graphs have shown out of control signals i.e. below the 
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LCL. Hence we conclude that our method of estimation and 

the control chart are giving a +ve recommendation for their 

use in finding out preferable control process or desirable out 

of control signal. By observing the Mean value Control chart 

we identified that the failure situation is detected at 

1st,2nd,3rd,25th and 28th to 33rd point of table-3 for the 

corresponding 
( )m t

in 4th-order statistics and at 1st and 21st 

to 26th point of table-4 for the corresponding 
( )m t

in 5th-order 

statistics, which is below 
( )Lm t

. It indicates that the failure 

process is detected at an early stage. The early detection of 

software failure will improve the software Reliability. When 

the time between failures is less than LCL, it is likely that 

there are assignable causes leading to significant process 

deterioration and it should be investigated. On the other hand, 

when the time between failures has exceeded the UCL, there 

are probably reasons that have lead to significant 

improvement. This is an alternative method of the tr chart 

proposed by Xie et. al [11], who has just grouped the samples 

into each of size „r‟. 
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